skip to main content


Search for: All records

Creators/Authors contains: "Bhattiprolu, Vijay and"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Braverman, Mark (Ed.)
    Grothendieck’s inequality [Grothendieck, 1953] states that there is an absolute constant K > 1 such that for any n× n matrix A, ‖A‖_{∞→1} := max_{s,t ∈ {± 1}ⁿ}∑_{i,j} A[i,j]⋅s(i)⋅t(j) ≥ 1/K ⋅ max_{u_i,v_j ∈ S^{n-1}}∑_{i,j} A[i,j]⋅⟨u_i,v_j⟩. In addition to having a tremendous impact on Banach space theory, this inequality has found applications in several unrelated fields like quantum information, regularity partitioning, communication complexity, etc. Let K_G (known as Grothendieck’s constant) denote the smallest constant K above. Grothendieck’s inequality implies that a natural semidefinite programming relaxation obtains a constant factor approximation to ‖A‖_{∞ → 1}. The exact value of K_G is yet unknown with the best lower bound (1.67…) being due to Reeds and the best upper bound (1.78…) being due to Braverman, Makarychev, Makarychev and Naor [Braverman et al., 2013]. In contrast, the little Grothendieck inequality states that under the assumption that A is PSD the constant K above can be improved to π/2 and moreover this is tight. The inapproximability of ‖A‖_{∞ → 1} has been studied in several papers culminating in a tight UGC-based hardness result due to Raghavendra and Steurer (remarkably they achieve this without knowing the value of K_G). Briet, Regev and Saket [Briët et al., 2015] proved tight NP-hardness of approximating the little Grothendieck problem within π/2, based on a framework by Guruswami, Raghavendra, Saket and Wu [Guruswami et al., 2016] for bypassing UGC for geometric problems. This also remained the best known NP-hardness for the general Grothendieck problem due to the nature of the Guruswami et al. framework, which utilized a projection operator onto the degree-1 Fourier coefficients of long code encodings, which naturally yielded a PSD matrix A. We show how to extend the above framework to go beyond the degree-1 Fourier coefficients, using the global structure of optimal solutions to the Grothendieck problem. As a result, we obtain a separation between the NP-hardness results for the two problems, obtaining an inapproximability result for the Grothendieck problem, of a factor π/2 + ε₀ for a fixed constant ε₀ > 0. 
    more » « less